How to Determine Energy Delivered
The WATTS reading displayed on the screen is the amount of electrical energy the ultrasonic generator delivers to the converter.
NOTE: The greater the resistance to the movement of the probe, the greater the amount of power that will be delivered to the probe. As a liquid is being processed, its viscosity and chemical characteristics will change causing the power readings to fluctuate.
How to calculate the power that is being delivered to a sample:
- Turn on the equipment
- Set the amplitude as required
- With the probe in air, not immersed in a sample, record the amount of watts displayed on the power monitor
- Without changing the amplitude setting, immerse the probe into the sample and record the amount of watts displayed on the power monitor
- The difference in power readings between step 3 and 4, is the amount of power being delivered to the sample in watts
- To obtain the power density in watts/cm², divide the number of watts obtained in step 5 by the area of the probe tip.
Area = (diameter/2)² x π or π r²
Area using a 3mm probe: 3mm/10 = .3cm = .15cm radius
.15²cm X 3.142 (π) = .0707cm²
Now divide the number of watts by the area of the probe.
Using 1 watt as an example, the power density would be 1/.0707 = 14 watt/cm²
NOTE: The intensity is expressed as watts per surface area. (watts/cm²)
Leave A Comment